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In 1982, an investigation of propene oligomerization bysl(€s),-
LuMe], revealed the first example gf-alkyl elimination in
metallocene chemisty? Prior to the Lu report, the most closely
related example in the literature involved the decomposition of
(MesCCHy)3Al to trimethylaluminum and isobuterfeAlthough
p-alkyl elimination has subsequently been observed with a variety
of transition metats23 and is viewed as relatively facile in Sc
metallocene chemistrd the only example of lanthanide-based
p-alkyl elimination in the literature since the initial report over 20
years agb? involves a 1996 study ofi-alkyl shifts in the ring-
opening polymerization of strained, small-ring methylenecyclo-
alkaneg* Since -alkyl elimination is much less common than
pB-hydrogen elimination, fewer examples are expected, and experi- Figure 1. Thermal ellipsoid plot of [(@Ves)2SmLu-1%73-C(CHy)l, 2,

mental examples are still considered to be in short sufiply. with ellipsoids drawn at the 50% probability level. All hydrogen atoms
The paucity of data ofi-alkyl elimination with lanthanides may  depicted were located and refined isotropically. The nonbonding-Sm1

arise from the experimental difficulties in accessing the requisite C43 and Sm2-C42 distances are approximately 3.92 A
complexes for study, e.g., synthetic access taN(&).LuMe],
originally required a multistep preparation of five highly air- dianion38-4° The orbital advantages of puckering TMM ligands
sensitive intermediatésRecently, we have developed a facile upon complexation to a metal were delineated long %&gand
synthetic route to unsolvated lanthanide alkylmetallocenes\Vigg).- structural studies typically show that tifeangle that defines the
LnR]y,2° that are now readily available by displacement of the pyramidal arrangement of the central carbon and the three methylene
loosely ligated [BPH*~ ion in [(CsMes),Ln][(«-PhyBPh]2¢ using carbons is approximately 12The four X-ray crystal structuréi?4:36
RLi reagents. We report here that this reaction with neopentyllithium of early transition metal TMM complexes most closely related to
provides a new approach to lanthanide-bgsedkyl elimination. 2 have nonplanar BD-type structures.

Reaction of MgCCH,Li?” with [(CsMes),Sm][(u-PhyBPhy], 1, Although the C(centralyC(methylene) distances B) 1.424(6)
in methylcyclohexane in silylated glassware does not lead to the A C(41)—C(44), 1.432(6) A C(41yC(42), and 1.426(6) A C(4D
isolation of the expected [(®es),Sm(CHCMes)]x but instead C(43), are indistinguishable, i.e., this six-electron ligand has a

generates the trimethylenemethane dianion compleR[€g).Smp- delocalized structure, the SAT distances consist of two types.
[u-17333-C(CHp)4], 2, eq 128 The 2.546(4) A Sm(BC(42) and 2.567(4) A Sm(2C(43) lengths
are somewhat longer than the range of typicaFSrsingle bond&
%\ and considerably shorter than the 2.734(2)799(4) A Sm-C(41,
@ Q e \ _____________ . (]) 44) distances. The range of St€(TMM) distances ir2 is similar
Q O R > ‘ to the 2.551(17)2.730(17) A range of SmC(allyl) connections
‘ ”& ﬁ observed in the substituted allyl complexes\é&s),Sm(CHCHCHR)
2 (R = Me, CH,CH,CHCHCH,).*2 The fact that the TMM ligand in

2 resembles an allyl group bound on each side to a metal may
account for its planarity?

One route by which2 could be formed from “[(GMes),Sm-
(CH.CMey)]y", the likely initial product of the MgCCH,LI/
[(CsMes).Sm][(u-Ph)yBPhy] reaction, involveg-methyl elimination
to make [(GMes),SmMe}, 3, and isobutene, Ci4+CMe,, as shown
in eq 2. Subsequent-€H activation of the isobutene by could
generate a 2-methylallyl complex, {@es),Sm[CHC(Me)CH], 4,
eq 3, which could be metalated again ®yo form 2, eq 4.

The overall transformation of a neopentyl group to a TMM ligand

The NMR spectra of2 were not structurally definitive due to
paramagnetism, but tHéC NMR spectrum containeds®les ring
and methyl resonances ét116.2 and 17.5 ppm, respectively,
consistent with the presence of Sm(lll) not Sm{fI was identified
by X-ray crystallograph¥ (Figure 1) and independent synthesis
as described below.

The trimethylenemethane (TMM) ligand (A) is unusual in
several ways compared to previously reported TMM complexes
(B—D).3137 To our knowledge, it is the first bridging TMM ligand

has been observed using Ru in the reaction of 2 equiv of Me
M> M& M§ CCH,MgCI with [MeSi(CHPMe,)s](PMe;)RUCh. 22 In the Ru case,
~ Vi two cyclometalation/elimination reactions are coupled with a
B C D

1
B-methyl elimination from a RuCKC(Me),CH, metallacycle. The
to be reported. It is also unusual in that the four carbon atoms are fact that this type of transformation can be done with an f element
planar to within 0.01 A. This matches calculations for the free TMM was unexpected since TMM complexes of these metals were
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previously unknown. The reaction becomes possible sine®/gg),-

4

SmMe} is such a powerful metalation reagent (e.g., it metalates

Me,Si to [(CsMes),.Sm(CHSiMes)]y).2® Interestingly, (GMes),Sc-
(CH,CMes) is not observed to underg8-methyl elimination*

Since Sm is larger than Sc, the Sm complex is less sterically

saturated and hence more reacti¥ve.

The following data are consistent with the steps in eggt.2
The reaction of MgCCH,Li with 1 under hydrogen forms CMe

in C¢D1,, Which is consistent with hydrogenolysis of [@es),-
Sm(CHCMes)]x. Analysis of the gases generated in the;®IEH,-

Li/1 reaction shows methane and isobutene, which is consistent
with eq 1. Consistent with eqs 3 and 4, 2 equiv of the independently
isolated trimer, [(GMes).SmMe}, 3, react with 3 equiv of
isobutene, Ck+=CMe,, to form CH, and2. When excess isobutene

is reacted with3, CH, and the 2-methylallyl complex @®es),-

Sm[CH,C(Me)CH], 4, are formed. This is consistent with complete

consumption of3 by isobutene via eq 3 to makkbefore3 can
metalate4 to make 2 via eq 4. Direct reaction o8 with 4,
independently isolated from reactions ®br [(CsMes),Sm(CH-

SiMe3)]%° and excess isobutei&shows complete conversion of

4 to 2 with concomitant formation of Cldaccording to eq 4.

neopentyl precursor to a trimethylenemethane dianion. The resulting
2 not only is the first f element TMM complex but it also reveals
a new mode of binding for TMM as a planar bridging ligand.
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